Embedding Riemann surfaces in maximal ideal spaces
نویسندگان
چکیده
منابع مشابه
Ideal Theory on Open Riemann Surfaces
Introduction. The theorems of the classical ideal theory in fields of algebraic numbers hold in rings of analytic functions on compact Riemann surfaces. The surfaces admitted in our discussion are closely related to algebraic surfaces; we deal either with compact surfaces from which a finite number of points are omitted or, more generally, with surfaces determined by an algebroid function. The ...
متن کاملUniform Approximation and Maximal Ideal Spaces
Let X be a compact set in the z-plane. We are interested in two function spaces associated with X: C(X) — space of all continuous complex-valued functions on X. P(X) =space of all uniform limits of polynomials on X. Thus a function ƒ on X lies in P{X) if there exists a sequence {Pn} of polynomials converging to ƒ uniformly on X. Clearly P(X) is part of C(X). QUESTION I. When is P(X) = C(X)t i.e...
متن کاملHorocyclic Coordinates for Riemann Surfaces and Moduli Spaces. I: Teichmuller and Riemann Spaces of Kleinian Groups
O. Introduction and statement of main results 1. Horocyclic coordinates 2. The zw = t plumbing construction 3. The plumbing construction for an admissible graph 4. Deformation (TeichmiiUer) and moduli (Riemann) spaces 5. Torsion free terminal b-groups 6. One-dimensional deformation spaces 7. Deformation spaces for torsion free terminal b-groups 8. One-dimensional moduli spaces 9. Moduli spaces ...
متن کاملHorocyclic Coordinates for Riemann Surfaces and Moduli Spaces. I: Teichmuller and Riemann Spaces of Kleinian Groups
O. Introduction and statement of main results 1. Horocyclic coordinates 2. The zw = t plumbing construction 3. The plumbing construction for an admissible graph 4. Deformation (TeichmiiUer) and moduli (Riemann) spaces 5. Torsion free terminal b-groups 6. One-dimensional deformation spaces 7. Deformation spaces for torsion free terminal b-groups 8. One-dimensional moduli spaces 9. Moduli spaces ...
متن کاملWeierstrass representation for surfaces in multidimensional Riemann spaces
Generalizations of the Weierstrass formulae to generic surface immersed into R 4 , S 4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1968
ISSN: 0022-1236
DOI: 10.1016/0022-1236(68)90014-1